"""A Tracer implementation that records to LangChain endpoint."""
from __future__ import annotations
import logging
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Optional, Union
from uuid import UUID
from langsmith import Client
from langsmith import run_trees as rt
from langsmith import utils as ls_utils
from tenacity import (
Retrying,
retry_if_exception_type,
stop_after_attempt,
wait_exponential_jitter,
)
from typing_extensions import override
from langchain_core.env import get_runtime_environment
from langchain_core.load import dumpd
from langchain_core.tracers.base import BaseTracer
from langchain_core.tracers.schemas import Run
if TYPE_CHECKING:
from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatGenerationChunk, GenerationChunk
logger = logging.getLogger(__name__)
_LOGGED = set()
_EXECUTOR: Optional[ThreadPoolExecutor] = None
[docs]
def log_error_once(method: str, exception: Exception) -> None:
"""Log an error once.
Args:
method: The method that raised the exception.
exception: The exception that was raised.
"""
if (method, type(exception)) in _LOGGED:
return
_LOGGED.add((method, type(exception)))
logger.error(exception)
[docs]
def wait_for_all_tracers() -> None:
"""Wait for all tracers to finish."""
if rt._CLIENT is not None: # noqa: SLF001
rt._CLIENT.flush() # noqa: SLF001
[docs]
def get_client() -> Client:
"""Get the client."""
return rt.get_cached_client()
def _get_executor() -> ThreadPoolExecutor:
"""Get the executor."""
global _EXECUTOR # noqa: PLW0603
if _EXECUTOR is None:
_EXECUTOR = ThreadPoolExecutor()
return _EXECUTOR
[docs]
class LangChainTracer(BaseTracer):
"""Implementation of the SharedTracer that POSTS to the LangChain endpoint."""
run_inline = True
[docs]
def __init__(
self,
example_id: Optional[Union[UUID, str]] = None,
project_name: Optional[str] = None,
client: Optional[Client] = None,
tags: Optional[list[str]] = None,
**kwargs: Any,
) -> None:
"""Initialize the LangChain tracer.
Args:
example_id: The example ID.
project_name: The project name. Defaults to the tracer project.
client: The client. Defaults to the global client.
tags: The tags. Defaults to an empty list.
kwargs: Additional keyword arguments.
"""
super().__init__(**kwargs)
self.example_id = (
UUID(example_id) if isinstance(example_id, str) else example_id
)
self.project_name = project_name or ls_utils.get_tracer_project()
self.client = client or get_client()
self.tags = tags or []
self.latest_run: Optional[Run] = None
self.run_has_token_event_map: dict[str, bool] = {}
def _start_trace(self, run: Run) -> None:
if self.project_name:
run.session_name = self.project_name
if self.tags is not None:
if run.tags:
run.tags = sorted(set(run.tags + self.tags))
else:
run.tags = self.tags.copy()
super()._start_trace(run)
if run.ls_client is None:
run.ls_client = self.client
[docs]
def on_chat_model_start(
self,
serialized: dict[str, Any],
messages: list[list[BaseMessage]],
*,
run_id: UUID,
tags: Optional[list[str]] = None,
parent_run_id: Optional[UUID] = None,
metadata: Optional[dict[str, Any]] = None,
name: Optional[str] = None,
**kwargs: Any,
) -> Run:
"""Start a trace for an LLM run.
Args:
serialized: The serialized model.
messages: The messages.
run_id: The run ID.
tags: The tags. Defaults to None.
parent_run_id: The parent run ID. Defaults to None.
metadata: The metadata. Defaults to None.
name: The name. Defaults to None.
kwargs: Additional keyword arguments.
Returns:
Run: The run.
"""
start_time = datetime.now(timezone.utc)
if metadata:
kwargs.update({"metadata": metadata})
chat_model_run = Run(
id=run_id,
parent_run_id=parent_run_id,
serialized=serialized,
inputs={"messages": [[dumpd(msg) for msg in batch] for batch in messages]},
extra=kwargs,
events=[{"name": "start", "time": start_time}],
start_time=start_time,
run_type="llm",
tags=tags,
name=name, # type: ignore[arg-type]
)
self._start_trace(chat_model_run)
self._on_chat_model_start(chat_model_run)
return chat_model_run
def _persist_run(self, run: Run) -> None:
# We want to free up more memory by avoiding keeping a reference to the
# whole nested run tree.
self.latest_run = Run.construct(
**run.dict(exclude={"child_runs", "inputs", "outputs"}),
inputs=run.inputs,
outputs=run.outputs,
)
[docs]
def get_run_url(self) -> str:
"""Get the LangSmith root run URL.
Returns:
str: The LangSmith root run URL.
Raises:
ValueError: If no traced run is found.
ValueError: If the run URL cannot be found.
"""
if not self.latest_run:
msg = "No traced run found."
raise ValueError(msg)
# If this is the first run in a project, the project may not yet be created.
# This method is only really useful for debugging flows, so we will assume
# there is some tolerace for latency.
for attempt in Retrying(
stop=stop_after_attempt(5),
wait=wait_exponential_jitter(),
retry=retry_if_exception_type(ls_utils.LangSmithError),
):
with attempt:
return self.client.get_run_url(
run=self.latest_run, project_name=self.project_name
)
msg = "Failed to get run URL."
raise ValueError(msg)
def _get_tags(self, run: Run) -> list[str]:
"""Get combined tags for a run."""
tags = set(run.tags or [])
tags.update(self.tags or [])
return list(tags)
def _persist_run_single(self, run: Run) -> None:
"""Persist a run."""
try:
run.extra["runtime"] = get_runtime_environment()
run.tags = self._get_tags(run)
if run.ls_client is not self.client:
run.ls_client = self.client
run.post()
except Exception as e:
# Errors are swallowed by the thread executor so we need to log them here
log_error_once("post", e)
raise
def _update_run_single(self, run: Run) -> None:
"""Update a run."""
try:
run.patch(exclude_inputs=run.extra.get("inputs_is_truthy", False))
except Exception as e:
# Errors are swallowed by the thread executor so we need to log them here
log_error_once("patch", e)
raise
def _on_llm_start(self, run: Run) -> None:
"""Persist an LLM run."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._persist_run_single(run)
@override
def _llm_run_with_token_event(
self,
token: str,
run_id: UUID,
chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None,
parent_run_id: Optional[UUID] = None,
) -> Run:
"""Append token event to LLM run and return the run."""
run_id_str = str(run_id)
if run_id_str not in self.run_has_token_event_map:
self.run_has_token_event_map[run_id_str] = True
else:
return self._get_run(run_id, run_type={"llm", "chat_model"})
return super()._llm_run_with_token_event(
# Drop the chunk; we don't need to save it
token,
run_id,
chunk=None,
parent_run_id=parent_run_id,
)
def _on_chat_model_start(self, run: Run) -> None:
"""Persist an LLM run."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._persist_run_single(run)
def _on_llm_end(self, run: Run) -> None:
"""Process the LLM Run."""
self._update_run_single(run)
def _on_llm_error(self, run: Run) -> None:
"""Process the LLM Run upon error."""
self._update_run_single(run)
def _on_chain_start(self, run: Run) -> None:
"""Process the Chain Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._persist_run_single(run)
def _on_chain_end(self, run: Run) -> None:
"""Process the Chain Run."""
self._update_run_single(run)
def _on_chain_error(self, run: Run) -> None:
"""Process the Chain Run upon error."""
self._update_run_single(run)
def _on_tool_start(self, run: Run) -> None:
"""Process the Tool Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._persist_run_single(run)
def _on_tool_end(self, run: Run) -> None:
"""Process the Tool Run."""
self._update_run_single(run)
def _on_tool_error(self, run: Run) -> None:
"""Process the Tool Run upon error."""
self._update_run_single(run)
def _on_retriever_start(self, run: Run) -> None:
"""Process the Retriever Run upon start."""
if run.parent_run_id is None:
run.reference_example_id = self.example_id
self._persist_run_single(run)
def _on_retriever_end(self, run: Run) -> None:
"""Process the Retriever Run."""
self._update_run_single(run)
def _on_retriever_error(self, run: Run) -> None:
"""Process the Retriever Run upon error."""
self._update_run_single(run)
[docs]
def wait_for_futures(self) -> None:
"""Wait for the given futures to complete."""
if self.client is not None:
self.client.flush()