Source code for langchain_experimental.plan_and_execute.schema
from abc import abstractmethod
from typing import List, Tuple
from langchain_core.output_parsers import BaseOutputParser
from pydantic import BaseModel, Field
[docs]
class Step(BaseModel):
"""Step."""
value: str
"""The value."""
[docs]
class Plan(BaseModel):
"""Plan."""
steps: List[Step]
"""The steps."""
[docs]
class StepResponse(BaseModel):
"""Step response."""
response: str
"""The response."""
[docs]
class BaseStepContainer(BaseModel):
"""Base step container."""
[docs]
@abstractmethod
def add_step(self, step: Step, step_response: StepResponse) -> None:
"""Add step and step response to the container."""
[docs]
@abstractmethod
def get_final_response(self) -> str:
"""Return the final response based on steps taken."""
[docs]
class ListStepContainer(BaseStepContainer):
"""Container for List of steps."""
steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list)
"""The steps."""
[docs]
def add_step(self, step: Step, step_response: StepResponse) -> None:
self.steps.append((step, step_response))
[docs]
def get_steps(self) -> List[Tuple[Step, StepResponse]]:
return self.steps
[docs]
def get_final_response(self) -> str:
return self.steps[-1][1].response
[docs]
class PlanOutputParser(BaseOutputParser):
"""Plan output parser."""
[docs]
@abstractmethod
def parse(self, text: str) -> Plan:
"""Parse into a plan."""