BedrockEmbeddings#
- class langchain_aws.embeddings.bedrock.BedrockEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Bedrock embedding models.
To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used.
Make sure the credentials / roles used have the required policies to access the Bedrock service.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param aws_access_key_id: SecretStr | None [Optional]#
AWS access key id.
If provided, aws_secret_access_key must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If not provided, will be read from βAWS_ACCESS_KEY_IDβ environment variable.
- param aws_secret_access_key: SecretStr | None [Optional]#
AWS secret_access_key.
If provided, aws_access_key_id must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If not provided, will be read from βAWS_SECRET_ACCESS_KEYβ environment variable.
- param aws_session_token: SecretStr | None [Optional]#
AWS session token.
If provided, aws_access_key_id and aws_secret_access_key must also be provided. Not required unless using temporary credentials. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
If not provided, will be read from βAWS_SESSION_TOKENβ environment variable.
- param client: Any = None#
Bedrock client.
- param config: Any = None#
An optional botocore.config.Config instance to pass to the client.
- param credentials_profile_name: str | None = None#
The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
- param endpoint_url: str | None = None#
Needed if you donβt want to default to us-east-1 endpoint
- param model_id: str = 'amazon.titan-embed-text-v1'#
Id of the model to call, e.g., amazon.titan-embed-text-v1, this is equivalent to the modelId property in the list-foundation-models api
- param model_kwargs: Dict | None = None#
Keyword arguments to pass to the model.
- param normalize: bool = False#
Whether the embeddings should be normalized to unit vectors
- param region_name: str | None = None#
The aws region e.g., us-west-2. Falls back to AWS_REGION/AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here.
- async aembed_documents(texts: List[str]) List[List[float]] [source]#
Asynchronous compute doc embeddings using a Bedrock model.
- Parameters:
texts (List[str]) β The list of texts to embed
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Asynchronous compute query embeddings using a Bedrock model.
- Parameters:
text (str) β The text to embed.
- Returns:
Embeddings for the text.
- Return type:
List[float]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Compute doc embeddings using a Bedrock model.
- Parameters:
texts (List[str]) β The list of texts to embed
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- embed_query(text: str) List[float] [source]#
Compute query embeddings using a Bedrock model.
- Parameters:
text (str) β The text to embed.
- Returns:
Embeddings for the text.
- Return type:
List[float]
- property provider: str#
Provider of the model.
Examples using BedrockEmbeddings