CohereEmbeddings#
- class langchain_cohere.embeddings.CohereEmbeddings[source]#
Bases:
BaseModel
,Embeddings
Implements the Embeddings interface with Cohere’s text representation language models.
Find out more about us at https://cohere.com and https://huggingface.co/CohereForAI
This implementation uses the Embed API - see https://docs.cohere.com/reference/embed
To use this you’ll need to a Cohere API key - either pass it to cohere_api_key parameter or set the COHERE_API_KEY environment variable.
API keys are available on https://cohere.com - it’s free to sign up and trial API keys work with this implementation.
- Basic Example:
cohere_embeddings = CohereEmbeddings(model="embed-english-light-v3.0") text = "This is a test document." query_result = cohere_embeddings.embed_query(text) print(query_result) doc_result = cohere_embeddings.embed_documents([text]) print(doc_result)
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param async_client: Any [Required]#
Cohere async client.
- param base_url: str | None = None#
Override the default Cohere API URL.
- param client: Any [Required]#
Cohere client.
- param cohere_api_key: SecretStr | None [Optional]#
- param embedding_types: Sequence[str] = ['float']#
Specifies the types of embeddings you want to get back
- param max_retries: int = 3#
Maximum number of retries to make when generating.
- param model: str | None = None#
Model name to use. It is mandatory to specify the model name.
- param request_timeout: float | None = None#
Timeout in seconds for the Cohere API request.
- param truncate: str | None = None#
Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”)
- param user_agent: str = 'langchain:partner'#
Identifier for the application making the request.
- async aembed(texts: List[str], *, input_type: Literal['search_document', 'search_query', 'classification', 'clustering', 'image'] | Any | None = None) List[List[float]] [source]#
- Parameters:
texts (List[str])
input_type (Literal['search_document', 'search_query', 'classification', 'clustering', 'image'] | ~typing.Any | None)
- Return type:
List[List[float]]
- async aembed_documents(texts: List[str]) List[List[float]] [source]#
Async call out to Cohere’s embedding endpoint.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
- async aembed_query(text: str) List[float] [source]#
Async call out to Cohere’s embedding endpoint.
- Parameters:
text (str) – The text to embed.
- Returns:
Embeddings for the text.
- Return type:
List[float]
- aembed_with_retry(**kwargs: Any) Any [source]#
Use tenacity to retry the embed call.
- Parameters:
kwargs (Any)
- Return type:
Any
- embed(texts: List[str], *, input_type: Literal['search_document', 'search_query', 'classification', 'clustering', 'image'] | Any | None = None) List[List[float]] [source]#
- Parameters:
texts (List[str])
input_type (Literal['search_document', 'search_query', 'classification', 'clustering', 'image'] | ~typing.Any | None)
- Return type:
List[List[float]]
- embed_documents(texts: List[str]) List[List[float]] [source]#
Embed a list of document texts.
- Parameters:
texts (List[str]) – The list of texts to embed.
- Returns:
List of embeddings, one for each text.
- Return type:
List[List[float]]
Examples using CohereEmbeddings