PickBestFeatureEmbedder#

class langchain_experimental.rl_chain.pick_best_chain.PickBestFeatureEmbedder(
auto_embed: bool,
model: Any | None = None,
*args: Any,
**kwargs: Any,
)[source]#

Embed the BasedOn and ToSelectFrom inputs into a format that can be used by the learning policy.

Parameters:
  • auto_embed (bool)

  • model (Optional[Any])

  • args (Any)

  • kwargs (Any)

model name

The type of embeddings to be used for feature representation. Defaults to BERT SentenceTransformer.

Type:

Any, optional

Methods

__init__(auto_embed[,Β model])

format(event)

format_auto_embed_off(event)

Converts the BasedOn and ToSelectFrom into a format that can be used by VW

format_auto_embed_on(event)

get_context_and_action_embeddings(event)

get_indexed_dot_product(context_emb,Β action_embs)

get_label(event)

__init__(
auto_embed: bool,
model: Any | None = None,
*args: Any,
**kwargs: Any,
)[source]#
Parameters:
  • auto_embed (bool)

  • model (Any | None)

  • args (Any)

  • kwargs (Any)

format(
event: PickBestEvent,
) β†’ str[source]#
Parameters:

event (PickBestEvent)

Return type:

str

format_auto_embed_off(
event: PickBestEvent,
) β†’ str[source]#

Converts the BasedOn and ToSelectFrom into a format that can be used by VW

Parameters:

event (PickBestEvent)

Return type:

str

format_auto_embed_on(
event: PickBestEvent,
) β†’ str[source]#
Parameters:

event (PickBestEvent)

Return type:

str

get_context_and_action_embeddings(
event: PickBestEvent,
) β†’ tuple[source]#
Parameters:

event (PickBestEvent)

Return type:

tuple

get_indexed_dot_product(
context_emb: List,
action_embs: List,
) β†’ Dict[source]#
Parameters:
  • context_emb (List)

  • action_embs (List)

Return type:

Dict

get_label(
event: PickBestEvent,
) β†’ tuple[source]#
Parameters:

event (PickBestEvent)

Return type:

tuple