VectorStoreIndexWrapper#
- class langchain.indexes.vectorstore.VectorStoreIndexWrapper[source]#
Bases:
BaseModel
Wrapper around a vectorstore for easy access.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param vectorstore: VectorStore [Required]#
- async aquery(question: str, llm: BaseLanguageModel | None = None, retriever_kwargs: Dict[str, Any] | None = None, **kwargs: Any) str [source]#
Query the vectorstore.
- Parameters:
question (str)
llm (BaseLanguageModel | None)
retriever_kwargs (Dict[str, Any] | None)
kwargs (Any)
- Return type:
str
- async aquery_with_sources(question: str, llm: BaseLanguageModel | None = None, retriever_kwargs: Dict[str, Any] | None = None, **kwargs: Any) dict [source]#
Query the vectorstore and get back sources.
- Parameters:
question (str)
llm (BaseLanguageModel | None)
retriever_kwargs (Dict[str, Any] | None)
kwargs (Any)
- Return type:
dict
- query(question: str, llm: BaseLanguageModel | None = None, retriever_kwargs: Dict[str, Any] | None = None, **kwargs: Any) str [source]#
Query the vectorstore.
- Parameters:
question (str)
llm (BaseLanguageModel | None)
retriever_kwargs (Dict[str, Any] | None)
kwargs (Any)
- Return type:
str
- query_with_sources(question: str, llm: BaseLanguageModel | None = None, retriever_kwargs: Dict[str, Any] | None = None, **kwargs: Any) dict [source]#
Query the vectorstore and get back sources.
- Parameters:
question (str)
llm (BaseLanguageModel | None)
retriever_kwargs (Dict[str, Any] | None)
kwargs (Any)
- Return type:
dict