PineconeSparseEmbeddings#
- class langchain_pinecone.embeddings.PineconeSparseEmbeddings[source]#
Bases:
PineconeEmbeddings
PineconeSparseEmbeddings embedding model.
Example
from langchain_pinecone import PineconeSparseEmbeddings model = PineconeSparseEmbeddings(model="pinecone-sparse-english-v0")
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param batch_size: int | None = None#
Batch size for embedding documents.
- param dimension: int | None = None#
- param document_params: Dict [Optional]#
Parameters for embedding document
- param model: str [Required]#
Model to use for example ‘multilingual-e5-large’.
- param pinecone_api_key: SecretStr [Optional] (alias 'api_key')#
Pinecone API key.
If not provided, will look for the PINECONE_API_KEY environment variable.
- param query_params: Dict [Optional]#
Parameters for embedding query.
- param show_progress_bar: bool = False#
- async aembed_documents(texts: List[str]) List[SparseValues] [source]#
Asynchronously embed search docs with sparse embeddings.
- Parameters:
texts (List[str])
- Return type:
List[SparseValues]
- async aembed_query(text: str) SparseValues [source]#
Asynchronously embed query text with sparse embeddings.
- Parameters:
text (str)
- Return type:
SparseValues
- embed_documents(texts: List[str]) List[SparseValues] [source]#
Embed search docs with sparse embeddings.
- Parameters:
texts (List[str])
- Return type:
List[SparseValues]
- embed_query(text: str) SparseValues [source]#
Embed query text with sparse embeddings.
- Parameters:
text (str)
- Return type:
SparseValues
- property async_client: PineconeAsyncio#
Lazily initialize the async client.