EmbeddingsVectorizer#
- class langchain_redis.cache.EmbeddingsVectorizer[source]#
Bases:
BaseVectorizer
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- param dims: int | None = None#
- param dtype: str = 'float32'#
- param embeddings: Embeddings [Required]#
- param model: str = 'custom_embeddings'#
- async aembed(text: str, dtype: str | VectorDataType = 'float32', **kwargs: Any) List[float] [source]#
- Parameters:
text (str)
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[float]
- async aembed_many(texts: List[str], dtype: str | VectorDataType = 'float32', **kwargs: Any) List[List[float]] [source]#
- Parameters:
texts (List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[List[float]]
- batchify(seq: list, size: int, preprocess: Callable | None = None)#
- Parameters:
seq (list)
size (int)
preprocess (Callable | None)
- embed(text: str, dtype: str | VectorDataType = 'float32', **kwargs: Any) List[float] [source]#
- Parameters:
text (str)
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[float]
- embed_many(texts: List[str], dtype: str | VectorDataType = 'float32', **kwargs: Any) List[List[float]] [source]#
- Parameters:
texts (List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
List[List[float]]
- encode(texts: str | List[str], dtype: str | VectorDataType, **kwargs: Any) ndarray [source]#
- Parameters:
texts (str | List[str])
dtype (str | VectorDataType)
kwargs (Any)
- Return type:
ndarray
- property type: str#