JSFrameworkTextSplitter#
- class langchain_text_splitters.jsx.JSFrameworkTextSplitter(
- separators: List[str] | None = None,
- chunk_size: int = 2000,
- chunk_overlap: int = 0,
- **kwargs: Any,
Text splitter that handles React (JSX), Vue, and Svelte code.
This splitter extends RecursiveCharacterTextSplitter to handle React (JSX), Vue, and Svelte code by: 1. Detecting and extracting custom component tags from the text 2. Using those tags as additional separators along with standard JS syntax
The splitter combines: - Custom component tags as separators (e.g. <Component, <div) - JavaScript syntax elements (function, const, if, etc) - Standard text splitting on newlines
This allows chunks to break at natural boundaries in React, Vue, and Svelte component code.
Initialize the JS Framework text splitter.
- Parameters:
separators (List[str] | None) β Optional list of custom separator strings to use
chunk_size (int) β Maximum size of chunks to return
chunk_overlap (int) β Overlap in characters between chunks
**kwargs (Any) β Additional arguments to pass to parent class
Methods
__init__
([separators,Β chunk_size,Β chunk_overlap])Initialize the JS Framework text splitter.
atransform_documents
(documents,Β **kwargs)Asynchronously transform a list of documents.
create_documents
(texts[,Β metadatas])Create documents from a list of texts.
from_huggingface_tokenizer
(tokenizer,Β **kwargs)Text splitter that uses HuggingFace tokenizer to count length.
from_language
(language,Β **kwargs)Return an instance of this class based on a specific language.
from_tiktoken_encoder
([encoding_name,Β ...])Text splitter that uses tiktoken encoder to count length.
get_separators_for_language
(language)Retrieve a list of separators specific to the given language.
split_documents
(documents)Split documents.
split_text
(text)Split text into chunks.
transform_documents
(documents,Β **kwargs)Transform sequence of documents by splitting them.
- __init__(
- separators: List[str] | None = None,
- chunk_size: int = 2000,
- chunk_overlap: int = 0,
- **kwargs: Any,
Initialize the JS Framework text splitter.
- Parameters:
separators (List[str] | None) β Optional list of custom separator strings to use
chunk_size (int) β Maximum size of chunks to return
chunk_overlap (int) β Overlap in characters between chunks
**kwargs (Any) β Additional arguments to pass to parent class
- Return type:
None
- async atransform_documents(
- documents: Sequence[Document],
- **kwargs: Any,
Asynchronously transform a list of documents.
- create_documents(
- texts: list[str],
- metadatas: list[dict[Any, Any]] | None = None,
Create documents from a list of texts.
- Parameters:
texts (list[str])
metadatas (list[dict[Any, Any]] | None)
- Return type:
List[Document]
- classmethod from_huggingface_tokenizer(
- tokenizer: Any,
- **kwargs: Any,
Text splitter that uses HuggingFace tokenizer to count length.
- Parameters:
tokenizer (Any)
kwargs (Any)
- Return type:
- classmethod from_language(
- language: Language,
- **kwargs: Any,
Return an instance of this class based on a specific language.
This method initializes the text splitter with language-specific separators.
- Parameters:
language (Language) β The language to configure the text splitter for.
**kwargs (Any) β Additional keyword arguments to customize the splitter.
- Returns:
An instance of the text splitter configured for the specified language.
- Return type:
- classmethod from_tiktoken_encoder(
- encoding_name: str = 'gpt2',
- model_name: str | None = None,
- allowed_special: Literal['all'] | AbstractSet[str] = {},
- disallowed_special: Literal['all'] | Collection[str] = 'all',
- **kwargs: Any,
Text splitter that uses tiktoken encoder to count length.
- Parameters:
encoding_name (str)
model_name (str | None)
allowed_special (Literal['all'] | ~typing.AbstractSet[str])
disallowed_special (Literal['all'] | ~typing.Collection[str])
kwargs (Any)
- Return type:
TS
- static get_separators_for_language(
- language: Language,
Retrieve a list of separators specific to the given language.
- Parameters:
language (Language) β The language for which to get the separators.
- Returns:
A list of separators appropriate for the specified language.
- Return type:
List[str]
- split_text(
- text: str,
Split text into chunks.
This method splits the text into chunks by: - Extracting unique opening component tags using regex - Creating separators list with extracted tags and JS separators - Splitting the text using the separators by calling the parent class method
- Parameters:
text (str) β String containing code to split
- Returns:
List of text chunks split on component and JS boundaries
- Return type:
List[str]