KonlpyTextSplitter#

class langchain_text_splitters.konlpy.KonlpyTextSplitter(
separator: str = '\n\n',
**kwargs: Any,
)[source]#

Splitting text using Konlpy package.

It is good for splitting Korean text.

Initialize the Konlpy text splitter.

Methods

__init__([separator])

Initialize the Konlpy text splitter.

atransform_documents(documents,Β **kwargs)

Asynchronously transform a list of documents.

create_documents(texts[,Β metadatas])

Create documents from a list of texts.

from_huggingface_tokenizer(tokenizer,Β **kwargs)

Text splitter that uses HuggingFace tokenizer to count length.

from_tiktoken_encoder([encoding_name,Β ...])

Text splitter that uses tiktoken encoder to count length.

split_documents(documents)

Split documents.

split_text(text)

Split incoming text and return chunks.

transform_documents(documents,Β **kwargs)

Transform sequence of documents by splitting them.

Parameters:
  • separator (str)

  • kwargs (Any)

__init__(
separator: str = '\n\n',
**kwargs: Any,
) β†’ None[source]#

Initialize the Konlpy text splitter.

Parameters:
  • separator (str)

  • kwargs (Any)

Return type:

None

async atransform_documents(
documents: Sequence[Document],
**kwargs: Any,
) β†’ Sequence[Document]#

Asynchronously transform a list of documents.

Parameters:
  • documents (Sequence[Document]) – A sequence of Documents to be transformed.

  • kwargs (Any)

Returns:

A sequence of transformed Documents.

Return type:

Sequence[Document]

create_documents(
texts: list[str],
metadatas: list[dict[Any, Any]] | None = None,
) β†’ List[Document]#

Create documents from a list of texts.

Parameters:
  • texts (list[str])

  • metadatas (list[dict[Any, Any]] | None)

Return type:

List[Document]

classmethod from_huggingface_tokenizer(
tokenizer: Any,
**kwargs: Any,
) β†’ TextSplitter#

Text splitter that uses HuggingFace tokenizer to count length.

Parameters:
  • tokenizer (Any)

  • kwargs (Any)

Return type:

TextSplitter

classmethod from_tiktoken_encoder(
encoding_name: str = 'gpt2',
model_name: str | None = None,
allowed_special: Literal['all'] | AbstractSet[str] = {},
disallowed_special: Literal['all'] | Collection[str] = 'all',
**kwargs: Any,
) β†’ TS#

Text splitter that uses tiktoken encoder to count length.

Parameters:
  • encoding_name (str)

  • model_name (str | None)

  • allowed_special (Literal['all'] | ~typing.AbstractSet[str])

  • disallowed_special (Literal['all'] | ~typing.Collection[str])

  • kwargs (Any)

Return type:

TS

split_documents(
documents: Iterable[Document],
) β†’ List[Document]#

Split documents.

Parameters:

documents (Iterable[Document])

Return type:

List[Document]

split_text(
text: str,
) β†’ List[str][source]#

Split incoming text and return chunks.

Parameters:

text (str)

Return type:

List[str]

transform_documents(
documents: Sequence[Document],
**kwargs: Any,
) β†’ Sequence[Document]#

Transform sequence of documents by splitting them.

Parameters:
  • documents (Sequence[Document])

  • kwargs (Any)

Return type:

Sequence[Document]

Examples using KonlpyTextSplitter