TextSplitter#
- class langchain_text_splitters.base.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool | ~typing.Literal['start', 'end'] = False, add_start_index: bool = False, strip_whitespace: bool = True)[source]#
Interface for splitting text into chunks.
Create a new TextSplitter.
- Parameters:
chunk_size (int) β Maximum size of chunks to return
chunk_overlap (int) β Overlap in characters between chunks
length_function (Callable[[str], int]) β Function that measures the length of given chunks
keep_separator (Union[bool, Literal['start', 'end']]) β Whether to keep the separator and where to place it in each corresponding chunk (True=βstartβ)
add_start_index (bool) β If True, includes chunkβs start index in metadata
strip_whitespace (bool) β If True, strips whitespace from the start and end of every document
Methods
__init__
([chunk_size,Β chunk_overlap,Β ...])Create a new TextSplitter.
atransform_documents
(documents,Β **kwargs)Asynchronously transform a list of documents.
create_documents
(texts[,Β metadatas])Create documents from a list of texts.
from_huggingface_tokenizer
(tokenizer,Β **kwargs)Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder
([encoding_name,Β ...])Text splitter that uses tiktoken encoder to count length.
split_documents
(documents)Split documents.
split_text
(text)Split text into multiple components.
transform_documents
(documents,Β **kwargs)Transform sequence of documents by splitting them.
- __init__(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool | ~typing.Literal['start', 'end'] = False, add_start_index: bool = False, strip_whitespace: bool = True) None [source]#
Create a new TextSplitter.
- Parameters:
chunk_size (int) β Maximum size of chunks to return
chunk_overlap (int) β Overlap in characters between chunks
length_function (Callable[[str], int]) β Function that measures the length of given chunks
keep_separator (bool | Literal['start', 'end']) β Whether to keep the separator and where to place it in each corresponding chunk (True=βstartβ)
add_start_index (bool) β If True, includes chunkβs start index in metadata
strip_whitespace (bool) β If True, strips whitespace from the start and end of every document
- Return type:
None
- async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document] #
Asynchronously transform a list of documents.
- create_documents(texts: List[str], metadatas: List[dict] | None = None) List[Document] [source]#
Create documents from a list of texts.
- Parameters:
texts (List[str]) β
metadatas (List[dict] | None) β
- Return type:
List[Document]
- classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter [source]#
Text splitter that uses HuggingFace tokenizer to count length.
- Parameters:
tokenizer (Any) β
kwargs (Any) β
- Return type:
- classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) TS [source]#
Text splitter that uses tiktoken encoder to count length.
- Parameters:
encoding_name (str) β
model_name (str | None) β
allowed_special (Literal['all'] | ~typing.AbstractSet[str]) β
disallowed_special (Literal['all'] | ~typing.Collection[str]) β
kwargs (Any) β
- Return type:
TS