TokenTextSplitter#
- class langchain_text_splitters.base.TokenTextSplitter(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any)[source]#
Splitting text to tokens using model tokenizer.
Create a new TextSplitter.
Methods
__init__
([encoding_name,Β model_name,Β ...])Create a new TextSplitter.
atransform_documents
(documents,Β **kwargs)Asynchronously transform a list of documents.
create_documents
(texts[,Β metadatas])Create documents from a list of texts.
from_huggingface_tokenizer
(tokenizer,Β **kwargs)Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder
([encoding_name,Β ...])Text splitter that uses tiktoken encoder to count length.
split_documents
(documents)Split documents.
split_text
(text)Split text into multiple components.
transform_documents
(documents,Β **kwargs)Transform sequence of documents by splitting them.
- Parameters:
encoding_name (str) β
model_name (Optional[str]) β
allowed_special (Union[Literal['all'], AbstractSet[str]]) β
disallowed_special (Union[Literal['all'], Collection[str]]) β
kwargs (Any) β
- __init__(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) None [source]#
Create a new TextSplitter.
- Parameters:
encoding_name (str) β
model_name (str | None) β
allowed_special (Literal['all'] | ~typing.AbstractSet[str]) β
disallowed_special (Literal['all'] | ~typing.Collection[str]) β
kwargs (Any) β
- Return type:
None
- async atransform_documents(documents: Sequence[Document], **kwargs: Any) Sequence[Document] #
Asynchronously transform a list of documents.
- create_documents(texts: List[str], metadatas: List[dict] | None = None) List[Document] #
Create documents from a list of texts.
- Parameters:
texts (List[str]) β
metadatas (List[dict] | None) β
- Return type:
List[Document]
- classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) TextSplitter #
Text splitter that uses HuggingFace tokenizer to count length.
- Parameters:
tokenizer (Any) β
kwargs (Any) β
- Return type:
- classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: str | None = None, allowed_special: Literal['all'] | AbstractSet[str] = {}, disallowed_special: Literal['all'] | Collection[str] = 'all', **kwargs: Any) TS #
Text splitter that uses tiktoken encoder to count length.
- Parameters:
encoding_name (str) β
model_name (str | None) β
allowed_special (Literal['all'] | ~typing.AbstractSet[str]) β
disallowed_special (Literal['all'] | ~typing.Collection[str]) β
kwargs (Any) β
- Return type:
TS
Examples using TokenTextSplitter